
What is the VB Callback Server Dll?
The Visual Basic Callback Server Dll allows you to use methods in a VB class module as callbacks
for standard Windows API calls. Exposing callback entry points in Visual Basic allows you to easily
use the EnumWindows, EnumFonts, and other windows enumeration functions without writing a C
Dll to handle the function pointers required for these API calls. Other applications include timers
without forms, controlling a dialog resource from VB, and installing Windows hooks. VBA is not
thread-safe, so callbacks for threading aren't supported.
Since window procedures are considered callback functions, the callback server can also be used to
subclass windows (in the same process, cross-process subclassing isn't supported). You can also use
the Message Blaster OCX for subclassing. While MsgBlast is easier to use for the programmer
making an early attempt at directly manipulating windows message and supports cross-process
subclassing, the callback server has much less overhead. MsgBlast doesn't support callbacks, just
subclassing of a window handle.

Setup?
To install the callback server, copy CBack32.Dll to the Windows\System directory (or System32 on
Windows NT) and run regsvr32 CBack32.Dll. Regsvr32 can be found in the Tools\RegUtils
directory on the VB5 CD. If you will be using the callback server to subclass and will be using break
mode in VB, you should also copy VBBrk32.Dll to the system[32] directory. VBBrk32.Dll isn't
required (in fact, it will not load) for a VB executable. VBBrk32 failing to load will cause Regsvr32
to post an error message, but you won't get this error when using CBack32 from a VB executable. If
you want to insure CBack32 is properly installed on your client machine, add the following code to
your program (assuming you have a reference to VB CallBack Server).
Private Declare Function DllRegisterServer Lib "CBack32.Dll" () As
Long
Sub Main()
Dim CBackGen As CallBackGenerator
 On Error Resume Next
 Set CBackGen = New CallBackGenerator
 If Err Then
 DllRegisterServer
 Err.Clear
 Set CBackGen = New CallBackGenerator
 End If
 If Err Then MsgBox "This program requires CBack32.Dll": End
End Sub

How do I use it?
To help you understand how to create a callback class module, we'll step through creating a class
module to provide an EnumWindowsProc callback for the EnumWindows API call. We'll go over
the details of each of the calls after you've seen the initial steps:
1. Add a reference to the Callback Server to your project.
2. Insert a class module into your project.
3. In the object browser, look at the VBCallBackType enumeration in the VBCallBack type library.
4. Select CBType_WNDENUMPROC and look at the description of the required method. You'll

see (ByVal Long, Any) As Long. This information, together with the windows API help file
for EnumWindows, will help you create a correct function prototype.

5. Make sure your editor is in Full Module View. You can change this setting using the Editor tab
of the Options dialog.

6. Type Public Function WNDENUMPROC(ByVal hWnd As Long, LParam As ListBox) As Long
into your class module. (The last parameter is user defined, we'll pass in a listbox just
because we can).

7. Before the first method, type Private m_CallBack As CallBack
8. Add a Class_Initialize event. In the Class_Initialize event, type Set m_CallBack =

NewCallBack(CBType_WNDENUMPROC, Me, True)
9. Add a read-only ProcAddress property as follows:
Public Property Get ProcAddress() As Long

 ProcAddress = m_CallBack.ProcAddress
End Property
You're now ready to create an instance of your class. After you create an instance of the class, you
can pass the ProcAddress property of your class to the EnumWindows API call, and EnumWindows
will call your WNDENUMPROC method.

What is the first method of a class?
The first method of a class is the first public entry in a class module. The callback server will only
work if the first method is correctly defined. Public variables aren't allowed before the first method.
To make sure the method you're defining is listed back first, be sure to use Full Module View. If you
screw this up, you'll crash.

VBHandler
The VBHandler property of the CallBack class is used to set the VB class instance which will be used
to handle the callback.

ProcAddress
The ProcAddress property returns the address you should use as the function pointer for your VB
class.

Persistent ProcAddress, IsPersistent
Some callback addresses are used by a single API call. For example, you only have to count on the
address of an enum procedure for the duration of the enumeration call. Other addresses, however,
must remain constant for an indefinite amount of time. For example, a WindowProc stays the same
as long as the window remains alive and is a persistent callback type. You can use the IsPersistent
property of a callback object to see if the VBHandler class you assigned will always be called for the
given procaddress. If a callback is persistent, then you can only create 32 instances of the callback
object (32 was just as easy as 16).

ResetCallBack
If a callback address isn't persistent, then the same address is used for each instance of a callback
with a given type. This means that the class instance which is being pointed to by the internal
callback routine may be invalid if you have more than one instance of the same non-persistent
callback type. Reading the ProcAddress property or calling the ResetCallBack method will
guarantee that the next call will be mapped to the correct class instance. For example, if you are
enumerating top-level windows and se a second class to enumerate child windows, you will need to
do an m_CallBack.ResetCallBack before you return from the outer EnumWindows call. If you don't,
then the next call made by EnumWindows will actually call the wrong enumerator class. In the
sample code, this isn't an issue because the same enumerator is used recursively for top-level and
child windows.

NewCallBack
The NewCallBack method of the CallBackGenerator class is used to create a callback object. You
can't use the New keyword directly to create a callback object. The first parameter, which is
required, specifies the type of callback object to be created. Note that NewCallBack will fail if you
ask for more than 32 instances or a persistent callback type. The valid values for the Type parameter
are listed in the VBCallBackType enumeration. If the callback type you use doesn't match your first
method, you'll crash.
The VBHandler optional parameter is used as a shortcut for setting the VBHandler property. Pass in
a reference to your class module.
The Contained optional parameter, which takes a boolean value, is a little harder to understand. If
Contained is true, then NewCallBack does not increment the reference count (ie, AddRef), the object
specified by the VBHandler parameter. This enables you to create a class module which uses a
callback object and can be destroyed with a Set obj=Nothing call. If you don't use the contained flag,
a Quit (or similar method) is required to clean up the object correctly. If you try to persist the
callback object beyond the lifetime of the initial VBHandler, you must reset VBHandler. If you

don't, you will crash. Normally, the call to NewCallBack is made in the Class_Initialize event and
looks like:
Set m_CallBack = NewCallBack(CBType_WNDPROC, Me, True)

How does it work?
The concept behind the callback server is very simple. Visual Basic classes are interfaces which are
derived from IDispatch. A VB class has a VTable, and you can generate a C++ header file which
describes the VTable. Given an instance of a VB class, you can call its methods from C++ using the
VTable. For example, the class for the WNDPROC looks something like:
class CVBWNDPROC : IDispatch
{
 STDMETHOD(CB_WNDPROC)(HWND hwnd, UINT msg, WPARAM wParam, LPARAM
lParam, LRESULT FAR*) = 0;
};
Reliance on the VTable is the reason why correctly defining the first method of the VB class is so
important. The callback server doesn't care what the remaining methods and properties are, so long
as the first method matches the class.
In order to have a callback, you must have a procedure address. Since member functions of classes
can't be used reliably as function pointers (the implicit this pointer screws things up), the callback Dll
has actual entry points for each defined callback type. The addresses of these fixed entry points are
returned to the ProcAddress property of the callback class. These procedures simply call through the
VTable into the VB class. For persistent callback types, there are 32 such entry points. Lets look at
the first one:
LRESULT WINAPI CB_WNDPROC0 (HWND hwnd,
 UINT msg,
 WPARAM wParam,
 LPARAM lParam)
{
 LRESULT retVal = 0;
 //Break mode checks, see next section
 if (*VBInBreakMode && VBInBreakMode()) {
 if (pCWNDPROC[0]->m_pDebugProc)
 return (pCWNDPROC[0]->m_pDebugProc)(hwnd, msg, wParam, lParam);
 else
 return 0;
 }
 //The real call. pCWNDPROC is a global array of pointers to
 //CallBack classes.
 if (pCWNDPROC[0]->m_pVBClass)
 ((CVBWNDPROC FAR*) (pCWNDPROC[0]->m_pVBClass))->
 CB_WNDPROC (hwnd, msg, wParam, lParam, &retVal);
 return retVal;
}

What happens in break mode?
Visual Basic doesn't mind it when you call directly into VTables, unless it happens to be in break
mode. If VB is in break mode, it doesn't expect any VB code to be executed. Calling the VTable
directly bypasses all safety checks to stop code from executing, so the callback server must check
this for you. The functionality for this is provided in a separate Dll called VBBrk32.Dll. This Dll
exposes one entry point, called VBInBreakMode, which returns a BOOL. The Dll will fail to load if
the callback server isn't running in the Visual Basic design environment. You can get a pointer to
VBInBreakMode using LoadLibrary and GetProcAddress calls. By declaring a variable as follows
BOOL (WINAPI *VBInBreakMode)(void) = NULL;, you can use the code shown above to determine
if VB is in break mode or not.

DebugProc
So what happens when VB is in break mode? The answer is simple: the VTable call is disallowed. If
the callback is being used to subclass, this causes a major problem because no windows message get

through. To work around this, the callback class has a DebugProc property which can be set to the
function pointer which is called in place of the VTable call when VB is in break mode. Search the
sample code for DebugProc to see this in action.

Debugging Crashes
Since you are making VTable calls, you have to be very careful that your VTable and parameters are
set up correctly. If you are experiencing crashes when your callback method is called, try to put a
break point on the first (ie, the Sub or Function line) of the callback method. If you don't reach the
breakpoint before crashing, then you've misplaced the first method. Be sure there are no public
methods, properties, or variables listed before your callback method. If you reach the break point,
but crash if you step off of it, then your parameters are wrong.
If you are running the 16 bit callback server, you may run into conflicts with VB when the
Appearance property of controls on a subclassed form is set to 1 - 3D. This isn't a problem for the 32
bit server.

Workarounds for parameter type limitations
VB classes can't take structures as parameters. This causes some problems for some callbacks, which
pass in structures. When your callback takes a structure, define the parameter as a ByVal Long and
use CopyMemory to make a copy of the structure. See WM_GETMINMAXINFO or
EnumFontFamProc in the sample project.
Another problem occurs with strings. VB strings are actually BSTRs, but callback strings are passed
in as LPSTRs. You can use CopyMemory to make a copy of the string. See the
ResourceEnumerator class in the sample to see an example.

How to build the callback server
The code for the callback server is included. Everything is highly macroized, so you need to modify
only the CBackDat.h file to add or remove callbacks. Beneath the main directory, there are IP32 and
IP16 (IP=In-process, I use this for all of my servers). The IP directories contain the VC mak files. In
order to build the project, you first need to build the TLB and header files using TLB.Bat, which
should be called from the IP32 directory with ..\TLB 32 H before you attempt to build the 32 bit
callback server.
Although I've tried to include as many callbacks in the server as I could find, you may find some that
I missed. You may also notice that the Dll could be smaller because I have many more callbacks
defined than you can ever use in a single project. If you wish to build a custom version of the
callback server, feel free to do so. However, please call the server something else, rename the file,
and change the GUIDs in CBack.ODL before redistribution of your server.
The code for the VBBrk32 project isn't included. This Dll will need to be replaced for future version
of Visual Basic (hence the generic name). Any code you derive from reverse engineering this Dll is
explicitly not supported. You can use it the same way I used it and get the same results.

Copyright information
CBack32.Dll and CBack16.Dll can be redistributed freely, as can derivations of the server. However,
the sample code and rights to the callback server belong to Microsoft Corporation and are
copyrighted with this book. Redistribution of the sample code is prohibited.

I hope you enjoy using my callback server. I'd love to hear your feedback, as well as feature requests
for future versions of the callback server Dll. You can contact me at MattCur@Microsoft.Com.

Matthew Curland

	What is the VB Callback Server Dll?
	Setup?
	How do I use it?
	What is the first method of a class?
	VBHandler
	ProcAddress
	Persistent ProcAddress, IsPersistent
	ResetCallBack
	NewCallBack

	How does it work?
	What happens in break mode?
	DebugProc

	Debugging Crashes
	Workarounds for parameter type limitations
	How to build the callback server
	Copyright information

